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This paper concerns the real-time estimation of wave amplitudes and their subsequent use
as a cost function in adaptive active control of bending vibrations in a beam. The amplitude
of the wave propagating downstream from the control location is estimated by "ltering the
outputs of an array of sensors. Minimizing this wave amplitude has signi"cant advantages
over the more conventional approach in which velocity at some point is minimized.
Expressions for the ideal frequency responses of the wave "lters are found for the case of an
array comprising two sensors in the far "eld. These "lters are non-causal. FIR
implementations designed using direct and time-delay methods are described, the latter
o!ering some substantial advantages. Practical performance considerations are discussed,
including "lter length, frequency range, e!ects of near "elds, group delays, accuracy and
cross-sensitivity. Simulations and experimental measurements are performed and compared.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The use of an appropriate cost function in an adaptive control system can be critical to the
system performance. Naturally, the choice of cost function depends strongly on the overall
objective of the control. If control of vibration at a point is desired, then the vibration level
at that point is an obvious cost function, and this approach has been used in many studies
(e.g., references [1}4]). However, minimizing vibration at a point does not guarantee low
overall vibration levels in a structure. For a better global performance, it may therefore be
preferable to use an alternative cost function, with one possibility being propagating wave
amplitude. In particular, one might choose to minimize the amplitude of the
outward-propagating wave downstream of the control location. This type of control forms
the subject of this paper.

A wave propagation model has been used in active vibration control by a number of
researchers (e.g., references [5}9]). To use wave amplitude as a cost function, however, it is
"rst necessary to obtain real-time estimates of the required wave amplitude, and this has
been considered in a number of studies (e.g., references [10}12]). In this paper, the wave
amplitude estimates will be derived by digitally "ltering, and combining, the outputs
obtained from an array of sensors. A systematic design method for the digital "lters was
presented in reference [13] with real-time intensity measurement applications in mind: this
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Feedforward control of bending vibrations.
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approach will be described further in this paper. Speci"cally, this paper describes the
application of wave-based adaptive control of vibrational energy #ow to #exural vibration
in beams, using a "ltered-X LMS algorithm [14]. The following section describes the system
being controlled, and this is followed by a description of the system behaviour in terms of
waves. Next, the real-time estimation of wave amplitudes is discussed together with various
performance considerations. Finally, the system is simulated numerically and implemented
experimentally, and the results compared and discussed.

2. THE SYSTEM

In this paper, feedforward adaptive active control of #exural vibration in a beam is
considered. A schematic diagram of the system is shown in Figure 1. A disturbance is
produced by some source, and excites vibrations of the beam by injecting waves at some
point x"x

�
. These waves travel through the structure producing unwanted vibrations in

some remote region. A reference signal from this disturbance is assumed to be available, and
this is the input to the digital controller, which produces a cancellation signal. This
cancellation signal is used to excite additional controlling vibrations by injecting further
waves at x"x

�
.

The resulting vibration "eld comprises waves, excited by both the disturbance and the
control, which travel in both directions along the beam. In general, waves will be re#ected
from the ends of the beam. In one limiting case, where the amplitudes of these re#ections are
negligible, the beam appears to be in"nitely long. In a "nite beam, however, the re#ections
lead to resonant behaviour of the beam and the wave "eld becomes a superposition of the
travelling and standing waves. This can cause deterioration in the performance of the active
control system.

The error sensor in Figure 1 provides an error signal that gives some measure of the
resulting vibrations. In this paper, an error sensor is de"ned in a general way: the error
sensor is some array of one or more response sensors such as accelerometers, strain gauges,
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piezoelectric patches, etc.; these response sensors may measure point responses or may be
distributed; the outputs of the response sensors may also be combined and "ltered, using
either analogue or digital "lters or both, and the resulting output signal is de"ned as being
the error signal. The error signal is used to perform two functions. The "rst is to quantify the
control achieved, while the second is to provide a cost function that may be used to
adaptively change the controller parameters to improve performance. In the simulations
and experiments described, a "ltered-X LMS algorithm is used for adaptation, but other
adaptive algorithms may also be used.

One common approach to error sensing is to measure the resulting acceleration (or
velocity) at the error location. The particular interest in this paper, however, is in obtaining
and using an error signal that is proportional to the amplitude of the positive-going
wave, rather than point velocity or acceleration. The theoretical bene"ts of using such an
error signal, as opposed to a conventional point measurement, are shown in the following
section.

3. STRUCTURAL DYNAMIC VARIABLES AND ERROR SENSORS

3.1. THE SYSTEM AND WAVES

The behaviour of the beam may be written in terms of propagating and near"eld wave
amplitudes. These waves may be de"ned in terms of any dynamic variable, such as
displacement or strain, but in this paper they will be de"ned in terms of velocity. In the
region of the sensor array, the velocity of the beam is given in terms of these velocity wave
components by

<(x, �)"��
�
(�)e�i��#��

���
(�)e���#��

�
(�)ei��, (1)

where��
�

and ��
�

are the amplitudes of the propagating waves and ��
���

is the residual near
"eld produced by the control. It is assumed that the amplitude of the upstream-going near
"eld ��

���
exp(kx) is negligible: this wave would typically be produced by re#ections from

the end at x"x
�
, and the stipulation that k(x

�
!x

�
)*� will generally be su$cient to

justify this assumption. In equation (1), k is the wavenumber, where

k"��� , �"���/EI (2)

with EI being the #exural sti!ness of the beam and � its mass per unit length. (A list of
symbols is given in Appendix A.) In the presence of damping, k has a (usually small) negative
imaginary part so that the amplitude of a propagating wave component decays gradually in
the direction of propagation. The damping can therefore be characterized by

�"!

Im(k)

Re(k)
Nk"Re(k)(1!i�). (3)

In this paper, it will be assumed that the decay of the propagating wave amplitude
is negligible over distances of the order of the sensor separation. The near "eld of the
disturbance is assumed to be negligible, while that of the control is included since
the control may be applied close to the sensor array and this may adversely a!ect the
performance of the system. The downstream propagating wave,
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is the superposition of components from the disturbance and control. These may be
considered as arising from the reference signal being "ltered by the primary and secondary
paths respectively.

The upstream propagating wave,

��
�

"��
���

#r��
�
; r"Re�i�� , (5)

also has two components. The "rst, ��
���

, is produced by any additional vibration sources
that may happen to act downstream (i.e., at x'0), ��

�
and ��

���
being incoherent.

(Henceforth, it will be assumed that this component is negligible unless otherwise stated.)
The second component, r��

�
, arises from the coherent re#ection of ��

�
from downstream

boundaries or attachments. The re#ection coe$cient r is complex, its magnitude R being
)1 and its phase (!�

�
) is typically negative and decreases monotonically.

The performance of the control system will depend on the nature of the wave "eld that is
present and on the cost function used. Two possible cost functions are considered in the
following subsection: velocity and downstream-going propagating wave amplitude.

3.2. STRUCTURAL DYNAMIC VARIABLES AS COST FUNCTIONS

3.2.1. <elocity as a cost function

Consider the case of a single velocity sensor mounted at x"0. If the output of this sensor
is used as a cost function, then an ideal controller will force the velocity at the point to be
zero. From equation (1), it follows that
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and hence the required control is
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A distance x further downstream the velocity will be

<(x, �)"!
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Three points should be noted. Firstly, the near "eld deteriorates the performance, giving rise
to some residual response away from the error sensor location. If a compact control system
is required (i.e., the error sensor and control are close), then this could be substantial.
Secondly, global control is not achieved, although the residual downstream vibrations
would be small if the near "eld at the error sensor location ��

���
and R are small. Finally,

re#ections can cause substantial problems at certain frequencies, especially if R+1. In
e!ect, the residual near "eld is multiplied by the factor 1/(1#r), which can become very
large if �

�
is an odd multiple of �. This is particularly true for lightly damped, "nite

structures, which are often the target for control. At these frequencies, the sensor is mounted
at, or close to, a node of a standing wave originating at the boundary. The frequencies can
be dense, since �

�
&2kl

�
, where l

�
is the distance to the boundary, which may be large. The
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frequencies are also typically di$cult to predict accurately, since they are sensitive to
changes or uncertainties in the system properties such as the boundary conditions (e.g.,
changes in orientation, payload, etc.). It would, therefore, be di$cult to compensate for the
term 1/(1#r) in a robust manner.

3.2.2. =ave amplitude as a cost function

If the positive-going wave amplitude ��
�

is sensed and used as a cost function, the control
adapts so that ��

�
is zero. The residual velocity for x*0 is then

<(x, �)"��
���

(�)e��� , (10)

and comprises solely the near "eld of the control. Thus, there is some localized response, but
global control is achieved and the e!ects of downstream re#ections are irrelevant. The
required control e!ort is

��
��


"!��
��	

(11)

so that the control merely involves cancellation of the propagating wave. It is, therefore,
apparent that there may be signi"cant bene"ts in using wave amplitude as a cost function.
However, conventional sensors measure the e!ects of the superposition of all wave
components. In order to estimate the amplitude of an individual wave component, it is
necessary to "lter and combine the outputs of a number of sensors. This is discussed in the
following sect.

4. WAVE AMPLITUDE ESTIMATION

In this paper, the error sensor is considered to be an array of response sensors, whose
outputs are "ltered and combined to yield an estimate of the required cost function. This
section concerns how the outputs from two velocity sensors can be "ltered to provide
estimates of the positive-going velocity wave amplitude. Velocities are used for numerical
convenience in this case, and in practice, accelerations would often be measured with
velocities found by integration. The physical arrangement of the sensors is shown in
Figure 2, where the co-ordinate x is now centered on the error sensor array. The velocity
sensors are separated by a distance �, the control force is applied at x"!l, and the
disturbance applied further in the negative direction, !x.

All "ltering is performed digitally, with the velocities assumed to be sampled at
a sampling frequency f

�
, after being "rst passed through low-pass analogue anti-aliasing

"lters with a cut-o! frequency of somewhat less than the Nyquist frequency f

"f

�
/2. The

ideal frequency responses of the wave "lters are de"ned at discrete, equally spaced
frequencies, the aim being to design an FIR "lter in the frequency domain which best
Figure 2. Error sensor array comprising two velocity sensors.
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approximates the ideal "lter (in a least-squares sense) and to implement it in the time
domain. The "lter is designed assuming that the near "eld ��

���
(�) is zero. This near "eld is

included in the simulations, however.
Referring to equation (1), it is apparent that, under far"eld conditions (i.e., ��

���
"0), the

outputs of the velocity sensors are related to the wave amplitudes by

�
<
�
<
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Inverting this to solve for the wave amplitudes gives
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where

H
�
"

1

4 cos(k�/2)
; H

�
"

i

4 sin(k�/2)
. (14)

Thus, by combining the outputs of the velocity sensors and "ltering with "lters having
frequency responsesH

�
(�) andH

�
(�), the amplitudes of the two waves may be determined.

It should be noted that these expressions also apply to acoustic waves in a duct, as described
by Swinbanks [10], except that here, of course, the waves are dispersive.

In what follows, frequencies will be normalized with respect to the sampling frequency so
that the Nyquist frequency corresponds to �"�. Distances will be normalized with respect

to the wavelength �

at the Nyquist frequency, and hence k"(2��/�


)��.

4.1. FREQUENCY RANGE AND SENSOR ARRAY DIMENSIONS

Control is to be applied over a frequency range from �
��

to �
���

. There are a variety of
in#uences on these limiting frequencies, one of which is "lter accuracy. The "lters are
accurate over a frequency range that is limited by a number of factors. The "rst of these is
the cut-o! frequency of the anti-aliasing "lters and the sampling frequency, the maximum
frequency of control being less than the Nyquist frequency. Secondly,H

�
becomes in"nite if

k�"�. This imposes a maximum separation for a given frequency range so that �/�

(0)5.

Thirdly, a lower frequency limit �
��

is imposed by the requirement that the array should (in
principle) be free from the in#uence of the near "eld of the control so that, from Figure 2,
exp(!k(l!�/2))�1. For example, if the sensor is always to be at least half a wavelength
from the control, then the maximum contribution of the near "eld to the sensor outputs is
exp(!�)+0)04. The lower frequency limit and the array location are then related by

2�
�

��
� �l!

�
2�"1. (15)

4.2. FIR FILTER DESIGN

The ideal impulse responses h
�
(t) and h

�
(t) of the digital "lters can, in principle, be found

from the inverse Fourier transforms ofH
�
(�) andH

�
(�). However, these impulse responses

are non-causal, which causes some problems in practical implementation. In this section,
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two methods for the design of the FIR "lters are described and some numerical results are
presented.

4.2.1. Direct method

The "rst method of "lter design is to use a least-squares approach in the frequency
domain. However, since the ideal "lters are non-causal, the result is a "lter whose frequency
response approximates this ideal. The "lter output at each time step gives an estimate of the
wave amplitude at that time. In the examples shown, these digital "lters were designed in
Matlab� using the function invfreqz.

4.2.2. 00¹ime-delay11 method

In the time-delay approach, an n
�
"(2n

�
#1) term "lter is designed by time-delaying the

"lters H by n
�
time steps. This involves multiplying the ideal frequency response by

exp(!i�n
�
). A "lter is then designed using the same least-squares procedure. The output of

the "lter at each time step is an estimate of the wave amplitude n
�
time steps before. These

"lters are substantially more accurate, but introduce time delays of n
�
steps, which a!ect the

maximum adaptation rate, but only very modestly.

4.3. COMPARISON OF FILTER DESIGN METHODS

The performances of the implemented "lters may be compared both in terms of their
accuracy and cross-sensitivity, which relate the "lter output to the actual amplitudes of the
positive- and negative-going waves. They are de"ned by
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�
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where�K �
�
is the estimated value of the positive-going wave andHK

�
andHK

�
are the frequency

responses of the implemented "lters. Ideally, the accuracy should have a value of unity,
while the cross-sensitivity should be zero. All comparisons depend on the sensor spacing
and the number of terms in the "lter. Numerical results are, therefore, presented for "lters of
moderate order, and for sensors having a typical spacing.

Figures 3 and 4 show the characteristics and performance of FIR "lters with n
�
"7 terms,

the sensor separation being �"0)3�

. Figures 5 and 6 show similar results for signi"cantly

longer "lters with n
�
"21 terms. It is apparent that "lters designed using the time-delay

approach are signi"cantly more accurate, with exact phases, and are much less sensitive to
negative-going waves than those designed using the direct approach. The bandwidths of the
direct designs, however, are somewhat larger, the lowest cut-o! frequency being
signi"cantly lower for the direct designs. Increasing the length of the "lter improves
accuracy signi"cantly for time-delay designs, but only moderately for direct designs. It is
also evident that H

�
is approximated well using relatively few terms, while the

approximation of H
�
substantially poorer.

Overall, the "lters designed using the time-delay approach are typically superior in
performance, being more accurate for a given "lter length and less sensitive to upstream



Figure 3. Frequency responses H
�
and H

�
of FIR "lters, n

�
"7:****, ideal;****, time-delay design;

- - - - - -, direct design.

Figure 4. Accuracies and cross-sensitivities of FIR "lters, n
�
"7:****, ideal;****, time-delay design;

- - - - - -, direct design.
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waves, Clearly, however, there must be a compromise between "lter length (and hence
accuracy and processing costs) and time delay.

4.4. GROUP DELAY, FILTER LENGTH AND ADAPTATION RATE

In addition to any time delay inherent in the "lters, there is also a time delay that arises
because of the time taken for a wave to propagate from the control location to the error
sensor. This delay is

	"

l

c
�

"

lk

2�
, (17)



Figure 5. Frequency responsesH
�
andH

�
of FIR "lters, n

�
"21:****, ideal;****, time-delay design;

- - - - - -, direct design.

Figure 6. Accuracies and cross-sensitivities of FIR "lters, n
�
"21: ****, ideal; ****, time-delay

design; - - - - - -, direct design.
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where c
�
is the group velocity. This group delay is a maximum at the lowest frequency of

interest, �
��

, and is approximately

	
���

"

l��

�

��

��

. (18)

For a typical array location, close to the control but outside its near "eld, this represents
a delay of around "ve samples. This is in addition to any group delay of the "lters.

The net e!ect of these time delays is that the maximum achievable adaptation rate is
reduced [15, 16]. In e!ect, adaptation has to wait for the control input to pass through the
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system and exit from the error sensor. In this respect, direct designs have an advantage.
However, this may not be of great concern when using the "lter output as a cost function for
the adaptation. In practice, these time delays are likely to be small relative to that inherent
in the "ltered-X LMS algorithm. This is because the derivation of the algorithm is based
upon the assumption of linearity and time-invariance, which is only a valid approximation
if adaptation is slow [14]. The additional time delay in the "lters is, therefore, unlikely to
have a signi"cant adverse e!ect on the adaptation rate.

In summary, the performance and the useful frequency range (between �
��

and �
���

) are
limited by the following con#icting factors:

� the Nyquist frequency and the cut-o! frequency of anti-aliasing "lters a!ects �
���

,
� the sensor spacing must be less than half a wavelength and a!ects �

���
,

� the "lter length n
�
a!ects �

��
: the more terms in the "lter, the lower �

��
is achievable,

� processing speed limitations may a!ect maximum "lter length,
� the sensor array should ideally lie outside the near "eld of the control: this a!ects �

��
,

� the distance of the sensor array from the control introduces a group delay,
� time-delay designs introduce additional group delays.

5. SIMULATIONS

5.1. PHYSICAL SYSTEM

The system being considered is shown in Figure 1. It is assumed that there are no
re#ections at end 1 (i.e., the end for which x(x

�
) while re#ections can occur from the end

2 at x"x
�
. Of interest is the total vibration level in the region x'x

�
, and the response is

found at one or more points x"x
�
, where x

�
lies in some region between x

�
and x

�
. The

e!ectiveness of the control is assessed in terms of the r.m.s. velocity at the response point
before and after control. The &&error sensor'' is centered at x"x

�
, and comprises two

velocity sensors located at x"x
�
$�/2, which are therefore separated by a distance �.

Their outputs are digitally "ltered and combined to provide an estimate of the
positive-going wave amplitude, as described in section 4. This single output is de"ned as the
error signal.

It is assumed that the physical arrangement is similar to that shown in Figure 1, i.e.,
x
�
)x

�
)x

�
(x

�
)x

�
(x

�
. Near "elds are included in the simulations but ignored in the

design of the error sensor "lters so that ideally, the sensors should lie outside the near "elds
of the control force and the end at x"x

�
.

5.2. SYSTEM DYNAMICS

5.2.1. Sensor and actuator dynamics

The disturbance and control actuators apply forces to the beam. It is assumed that the
actuators have perfect dynamics, in that the force produced per unit input signal is
a constant, independent of frequency. Similarly, the velocity sensors are assumed to have
frequency-independent dynamics with constant unity gains.

5.2.2. Beam response

In the simulations, the end at x"x
�
is taken to have a matrix of re#ection coe$cients r

�
.

This matrix relates the amplitudes of the re#ected propagating and near "eld waves
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[��
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(�)]� to those of the incident waves [��

�
(�) ��

���
(�)]�. It may take many

values, for example,
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for an anechoic termination, for a simply supported end or for a free end respectively.
The frequency response of a thin beam is such that a time harmonic force F exp(i�t)

injects velocity waves of amplitudes [2]
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where��
�

and ��
�

are the amplitudes of the positive- and negative-going propagating waves
at the excitation point, and ��

���
and ��

���
those of the near "elds.

Suppose that a force is applied at some point. Waves leave the excitation point with
amplitudes de"ned by equation (20). After they propagate over a distance x, the amplitudes
become

H
�
(x;�)"fe, f"�

e�i�� 0

0 e����, e"




�� �
1

!i �, (21)

where f(x) is a propagation matrix, e the vector of injected wave amplitudes and 
 is
a constant that depends on the excitation level and the beam properties. For convenience, it
is assumed that 
"1 so that

H
�
(x;�)"fe; f"�

e�i�� 0

0 e����; e"

1

�� �
1

!i �. (22)

The velocity at x is given in terms of the velocity wave amplitudes by

� (x)"[1 1]H
�
. (23)

In the real-time simulations impulse response functions, rather than frequency response
functions, are required. In principle, this merely involves "nding the inverse Fourier
transform of H

�
. However, di$culties arise in practice for the following reasons. Firstly, H

�
becomes in"nite at �"0 (i.e., a constant force produces constant acceleration and hence
in"nite velocity in the &&steady state''). Secondly, in a digital implementation, problems arise
for frequency components above the Nyquist frequency. If these higher frequencies are not
removed, then their aliases contribute to H

�
. However, if they are neglected, then the

resulting impulse responses are non-causal. Finally, if they are removed by "ltering, then, in
e!ect, H

�
must be passed through a low-pass "lter, so that the e!ective frequency response

di!ers from H
�
of equation (22). In the simulations, H

�
is band-pass "ltered in the range

(0)05f

}0)95f


) to remove the low- and high-frequency components.

5.2.3. Propagation paths

Six di!erent impulse responses are required to describe wave propagation on the beam.
The primary paths are the paths between the disturbance source input and the outputs of the
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individual sensors in the error sensor array. The two relevant impulse responses are those
that are between the disturbance force and the outputs of the two velocity sensors. The
cancellation paths are the paths between the control force input and the outputs of the
individual sensors in the error sensor array, the two relevant impulse responses being those
between the control force and the outputs of the two velocity sensors. Finally, the response
paths are the paths between the disturbance source and the control force inputs and the
output of the response sensor.

The frequency responses of each of these paths have two components, namely a direct
component and a re-ected component, which is merely the re#ection of the direct component
from the end at x"x

�
. For example, the impulse response relating the response sensor

output to the control force input is found from the frequency response

H
���

(�)"[1 1]f(x
�
!x

�
; �) e#[1 1]f(x

�
!x

�
; �)r

�
f(x

�
!x

�
; �)e, (24)

where the "rst term gives the direct component and the second term the re#ected
component.

All paths in the simulations are represented using FIR "lters and the accuracy of the
simulations is clearly dependent on these "lters being of su$cient length.

5.3. CONTROL SYSTEM

Digital control is implemented, using FIR "lters for all "ltering operations. The control
"lter is adaptive, using a "ltered-X LMS algorithm. In this, the updated "lter weights are
calculated from the expression

W
���

"W
�
#2�e

�
X

�
, (25)

where W
�
is the vector of "lter weights, e

�
is the error sensor output and X

�
is the vector of

inputs, with the subscript denoting the kth time step [14]. The constant � is an adaptation
TABLE 1

Parameters used in simulation

Sample rate f
�

1024 Hz
Nyquist frequency f


"f

�
/2 512 Hz

Wavelength at Nyquist frequency �


Damping � 0)001
Frequency range 0)05 f


}0)95 f


Wave "lter length n

�
11 terms (n

�
"5)

Cancellation path "lter length 26 terms
Control "lter length 64 terms
Adaptation parameter � 0)0003
Sensor spacing � 0)3�


x
�

0
x
�

2)1�


x
�
(far"eld simulation) 3)6�


(near"eld simulation) 2)7�


x
�
(far"eld simulation) 5)1�


(near"eld simulation) 4)7�


x
�
(far"eld simulation) 5)1�


(near"eld simulation) 4)7�
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parameter that determines the speed and stability of adaptation, with too small a value
resulting in slow adaptation, and too large a value resulting in poor attenuation or
instability.

The parameters used in the simulations are given in Table 1. Controller parameters have
been chosen to give moderately low order models that demonstrate the physical behaviour
that is typically observed.

5.4. NUMERICAL EXAMPLES

Real-time simulations of wave-based adaptive control were performed using Matlab�

and Simulink�. Anechoic and free terminations were simulated to illustrate the e!ects of
re#ections from the end. Simulations were also performed, using the velocity at the
right-hand error sensor as the cost function, to compare the performance of the proposed
wave-based approach with that of the conventional velocity-based control strategy.

Simulations were run for 100 s, with the average responses over a 20 s period from
t"80 s being found. In simulations of the anechoic termination, the response point was
arbitrarily chosen at some distant downstream location, while for the free end simulations,
the end of the beam was used as the response point. Simulations were performed with the
error sensor array either distant from the control location or somewhat within the in#uence
of its near "eld*these are referred to as &&far "eld'' and &&near "eld'' simulations in Table 1.
The results of the simulations are shown in Figures 7}13. These "gures show the r.m.s.
response after control compared to that before control. Stated mean attenuations refer to
the average attenuation attained over the frequency band 0)1f


}0)9f


.

The performance of the wave-based control system when the error sensor is located
outside the near "eld of the control actuator, for both anechoic and free end terminations, is
Figure 7. Attenuation under simulated wave-based control (error sensor in far "eld): ***, anechoic
termination; - - - - - -, free end.



Figure 8. Attenuation under simulated velocity-based control (error sensor in far "eld): ***, anechoic
termination; - - - - - -, free end.

Figure 9. Attenuation under simulated wave-based control (error sensor in near "eld): ***, anechoic
termination; - - - - - -, free end.
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Figure 10. Attenuation under simulated velocity-based control (error sensor in near "eld): ***, anechoic
termination; - - - - - -, free end.

Figure 11. Simulated attenuation with free end termination (error sensor in near "eld): ***, wave-based
control; - - - - - -, velocity-based control.
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shown in Figure 7. It is apparent that the attenuation is largely independent of the end
condition of the beam, with the anechoic termination resulting in a mean attenuation of
25)6 dB, compared to 24)7 dB for the free end. This is because the error sensor estimates the



Figure 12. Simulated attenuation with free end termination (error sensor in far "eld): *** 7, **** 11
and - - - - - - 15 term wave "lters.

Figure 13. Simulated attenuation with free end termination (error sensor in far "eld):*** 32,*****
64 and - - - - - - 128 term control "lters.
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downstream wave amplitude, which is independent of the end condition. Di!erences arise,
for example, from imperfections in the "lter design, which means that there is some
cross-sensitivity to the upstream wave.
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In Figure 8 is shown the performance of the velocity-based control system under the
same circumstances. It can be seen that the levels of attenuation for the anechoic
termination are similar to those achieved with wave-based control, with a mean attenuation
of 27)7 dB. This is to be expected as there is no need for wave decomposition in the presence
of a single propagating wave. The performance with the free end termination is signi"cantly
poorer in certain frequency bands, however, with a mean attenuation of 24)4 dB. This is
because the re#ective termination results in a standing wave between the control source and
the free end. At those frequencies at which the error sensor is located close to a node of this
standing wave (i.e., at f/f

�
+0)11, 0)35), any residual near "eld or noise strongly corrupts the

error signal, and the resulting achievable control is small [15]. These e!ects become more
apparent if the error sensor lies closer to the control actuator so that the near "eld of the
control source is not extremely small. Figures 9 and 10 show the performance of the wave-
and velocity-based control systems, respectively, under these circumstances. Comparing
Figures 9 and 7, it is apparent that the presence of the near "eld has an adverse e!ect on the
attenuation achieved by the wave-based control system, resulting in a mean attenuation of
18)5 dB. This is because the "lters used in the error sensor were designed for far"eld
conditions, and the contribution of the near "eld is (wrongly) attributed to a propagating
wave. Of more signi"cance, however, is the fact that the control system performance is still
largely independent of the beam termination, with the mean attenuation being 17)5 dB with
the free end. The presence of a near "eld also reduces the performance of the velocity-based
control system, resulting in a mean attenuation 16)9 dB with the anechoic termination. The
in#uence of the beam termination is more signi"cant than for the wave-based approach,
however, as can be seen in Figure 10, with the mean attenuation being 15)2 dB for the free
end. Figure 11 compares the performance of the two control systems with the free end
termination. While velocity control gives somewhat better attenuation in certain frequency
bands, wave control gives substantially better performance in others.

In summary, wave-based control o!ers superior broadband performance to velocity
control primarily when there is a signi"cant re#ection from the downstream end.

Surprisingly, the performance of the wave-based control system is not strongly dependent
on the length (and hence accuracy) of the "lters used in estimating wave amplitudes. This is
apparent in Figure 12, which shows the attenuation achieved with "lters having 7, 11 and
15 terms.

In Figure 13 is shown the attenuation achieved with control "lters having 32, 64 and 128
terms. These give very similar results, indicating that a 64-term "lter is adequate for the
simulations. Similarly, using cancellation path "lters having lengths 16, 26 or 32 terms
makes no discernible di!erence to the attenuation achieved.

A variety of values for the adaptation parameter, �, were used. It is apparent from these
simulations that the adaptation parameter can be substantially larger for wave-based
control than for the velocity-based control, typically by a factor of 2 or more. This means
that wave-based control can adapt more quickly and be more stable than the velocity-based
control.

6. EXPERIMENTAL MEASUREMENTS

6.1. EXPERIMENTAL SET-UP

The experimental set-up comprised a steel beam having dimensions 6000�50�6 mm
suspended using piano wire at four points along its length. The &&upstream'' end of the beam
was embedded in a sandbox to approximate an anechoic termination, while the



Figure 14. Experimental set-up.
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&&downstream'' end of the beam was left free to ensure strong re#ection of the incident
propagating wave.

Excitation was supplied using a Ling V201 electrodynamic shaker, driving the centre of
the beam through a stinger rod, while the control force was applied through an identical
system located 1 m &&downstream'' of the disturbance actuator, as shown in Figure 14. The
error sensor array comprised two PCB 353B65 piezoelectric accelerometers, separated by
a distance of 70 mm+0)3�


. Two di!erent error sensor array locations were used. In the

"rst location, the centre of the array was 300 mm from the control actuator, ensuring that
the in#uence of near "elds on the sensor array was small. In the second location, the centre
of the array was 135 mm from the control actuator. This resulted in a compact control
system, but placed the error sensors so that the near "eld of the control actuator was of
some signi"cance. Four PCB 353B65 accelerometers were placed downstream of the error
sensor array, as shown in Figure 14, to monitor the control system performance. The
output of the sensor at the beam tip has been used in the presentation of the experimental
results. In all the cases, the sensor outputs were integrated to give signals proportional to
the velocity.

The disturbance and control signals were generated by a Pentium II� 350 MHz PC
(incorporating 64 Mb of RAM), equipped with a Keithley Metrabyte� 1600 Series
A}D/D}A board. All real-time processing was performed using Matlab� and Simulink�

softwares, incorporating the Real-Time Workshop� and the Real-Time Windows Target�.
The disturbance signal, the control signal and the response were also monitored using
a Hewlett Packard HP� 3566A 8-channel analyser. Parameters used in the experimental
measurements are given in Table 2.



TABLE 2

Parameters used in experimental measurements

Sample rate f
�

2048 Hz
Nyquist frequency f


1024 Hz

Wavenumber/freq relationship k"0)842�f
Wavelength at Nyquist frequency �


0)233 m

Frequency range 200}800 Hz
(+0)2f


}0)8f


)

Wave "lter length n
�

11 terms (n
�
"5)

Cancellation path "lter length 32 terms
Control "lter length 64 terms
Adaptation parameter � 0)005
Sensor spacing � 0)070 m (+0)3�


)

x
�

0
x
�

1 m (+4)3�

)

x
�
(far"eld) 1)3 m (+5)6�


)

(near"eld) 1)134 m (+4)87�

)

x
�

3 m (+12)9�

)

x
�

3 m
Reconstruction (anti-alias) "lter cut o! 900 Hz
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6.2. EXPERIMENTAL PROCEDURE

Both the wave- and the velocity-based control systems were implemented on the beam. In
each case, operation of the system consisted of the following steps:

1. identi"cation of the cancellation path;
2. design of a "lter to approximate the cancellation path;
3. control of vibration.

The main di!erences between the numerical and experimental implementations are that the
actuator dynamics are fully included, that quantization errors are present due to A}D and
D}A conversion and that there is some re#ection from the &&upstream'' end of the beam
because the sandbox does not provide a perfectly anechoic termination.

For both the cancellation path identi"cation and the control implementation, the
disturbance signal was generated using the Simulink� random number generator. This was
output directly via a D}A converter for the cancellation path identi"cation, while for the
control implementation, it was digitally bandpass "ltered (200}800 Hz) prior to D}A
conversion. The resulting analogue signal was then low-pass "ltered (900 Hz cut o!,
constant delay) to eliminate high-frequency components, ampli"ed and used to drive the
disturbance shaker. The un"ltered output was also input to one A}D channel as the
reference signal.

6.3. EXPERIMENTAL RESULTS

In this section, the results of control using both wave- and velocity-based control systems
are presented. Two speci"c cases are considered. In the "rst case, the error sensor array is
su$ciently distant from the control actuator that the e!ects of near "elds are negligible,
while in the second, the error sensor array is placed within the near "eld of the control



Figure 15. Attenuation with free end termination (wave-based control, error sensor in far "eld): ***,
experiment; - - - - - -, simulation.

Figure 16. Attenuation with free end termination (velocity-based control, error sensor in far "eld): ***,
experiment; - - - - - -, simulation.
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actuator. The results are presented in terms of the r.m.s. velocity of the beam tip before and
after control.

Figures 15}17 show the results obtained with the error sensor array located outside the
near "eld of the control actuator. The results of wave-based control of the beam are shown



Figure 17. Measured attenuation with free end termination (error sensor in far "eld): ***, wave-based
control; - - - - - -, velocity-based control.

Figure 18. Attenuation with free end termination (wave-based control, error sensor in near "eld): ***,
experiment; - - - - - -, simulation.
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in Figure 15 and compared with simulations. It can be seen that the downstream response
of the beam is reduced by typically 15}25 dB over the frequency range 200}800 Hz. In
contrast, Figure 16 shows the results of velocity-based control of the beam, using the output
of the right-hand (downstream) sensor as the cost function. It is apparent that the overall



Figure 19. Attenuation with free end termination (velocity-based control, error sensor in near "eld): ***,
experiment; - - - - - -, simulation.
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attenuation is lower than that with wave-based control, with certain frequency bands
exhibiting particularly poor attenuation. This is also evident in Figure 17, which shows the
experimental results for the wave- and velocity-based controls.

Figures 18}20 show the results obtained with the error sensor array located within the
near "eld of the control actuator. In Figure 18 are shown the results of the wave-based
control, and it is apparent that the downstream response of the beam is reduced by typically
15}20 dB over the frequency range 200}800 Hz. In contrast, Figure 19 shows the
results of the velocity-based control, using the output of the right-hand sensor as the cost
function. It can be seen that the overall control performance is signi"cantly poorer than that
for the wave-based control, with distinct frequency bands of poor attenuation. These are
also evident in Figure 20, which shows the experimental results for the wave- and
velocity-based controls.

As discussed in section 5, the bands of poor attenuation under the velocity-based control
are a consequence of the error sensor being close to a node of the standing wave, increasing
the sensitivity to near "elds and other sources of error. In the case of Figures 16 and 17, the
in#uence of near "elds on the error sensor is minimal, but the bands of poor attenuation are
still evident. In the case of Figures 19 and 20, however, the error sensor is signi"cantly
in#uenced by the near "eld of the control actuator, and the resulting reduction in control
system performance in distinct frequency bands is more readily apparent.

Experimental measurements also veri"ed that the wave-based control system was
relatively insensitive to changes in the length of the control, wave and cancellation path
"lters, as indicated by the simulations. However, it is apparent that there are signi"cant
di!erences between the simulations and the experimental measurements with the error
sensor in the far "eld. In contrast, there is relatively good agreement between the
simulations and measurements with the error sensor within the near "eld of the control
actuator. This indicates that modelling discrepancies have a considerable e!ect on the



Figure 20. Measured attenuation with free end termination (error sensor in near "eld): ***, wave-based
control; - - - - - -, velocity-based control.
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control achieved in the former case, while they are not as signi"cant in the latter case, where
the dominant factor is the presence of the near "eld.

7. CONCLUDING REMARKS

The principles of a wave-based adaptive feedforward active vibration control system,
using wave amplitude as a cost function, have been developed. The real-time estimation of
propagating wave amplitude in the far "eld by combining and "ltering the outputs of two
velocity sensors has been described, and two approaches to the design of appropriate FIR
"lters have been proposed. Of these, the method based on a time delay appears to give the
most promising results. Simulations show the proposed wave-based approach to have
a performance similar to that of a conventional velocity-based system under anechoic
conditions, but to o!er signi"cantly better broadband attenuation under reverberant
conditions. Under these conditions, the velocity-based system can become very sensitive to
the errors introduced by near "elds and measurement noise. The wave-based system, being
less sensitive to these factors, permits the error sensor to be placed closer to the control
actuator, allowing the use of a more compact control system. Furthermore, the wave-based
system appears to allow the use of a larger adaptation parameter, �, thereby permitting
faster adaptation or a greater margin of stability than is possible with the velocity-based
approach. Altering the lengths of the control "lter, the wave "lters and the cancellation path
"lter were shown to have little e!ect on the control achieved, indicating that the lengths of
these "lters were adequate for the simulations. Experimental implementation of the control
system on a steel beam showed good agreement between the simulations and experimental
measurements.
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APPENDIX A: NOMENCLATURE

c wave velocity
EI #exural sti!ness
e error signal, base of natural log
e vector of injected wave amplitudes
f frequency
h(t) impulse response
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H(�) frequency response
k wavenumber
l distance between control actuator and centre of sensor array
r re#ection coe$cient (complex scalar)
r re#ection coe$cient (complex matrix)
R re#ection coe$cient (magnitude)
v (t) velocity (time domain)
<(�) velocity (frequency domain)
x location co-ordinate
W vector of "lter weights
X vector of "lter inputs

� constant relating wavenumber to frequency
� sensor spacing
� !Im(k)/Re(k) (i.e., k"Re(k) (1!i�))
� angular frequency
� beam mass per unit length
� phase
� adaptation parameter
	 time delay
� wave amplitude

Subscripts

C, c control
e error
g group
k kth time step
n Nyquist frequency
N near "eld
r response
s sampling rate or source
< velocity
#,! propagation/decay direction
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